1.CSPdarknet.py
import math
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
#-------------------------------------------------#
# MISH激活函数
#-------------------------------------------------#
class Mish(nn.Module):
def __init__(self):
super(Mish, self).__init__()
def forward(self, x):
return x * torch.tanh(F.softplus(x))
#---------------------------------------------------#
# 卷积块 -> 卷积 + 标准化 + 激活函数
# Conv2d + BatchNormalization + Mish
#---------------------------------------------------#
class BasicConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1):
super(BasicConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, kernel_size//2, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = Mish()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.activation(x)
return x
#---------------------------------------------------#
# CSPdarknet的结构块的组成部分
# 内部堆叠的残差块
#---------------------------------------------------#
class Resblock(nn.Module):
def __init__(self, channels, hidden_channels=None):
super(Resblock, self).__init__()
if hidden_channels is None:
hidden_channels = channels
self.block = nn.Sequential(
BasicConv(channels, hidden_channels, 1),
BasicConv(hidden_channels, channels, 3)
)
def forward(self, x):
return x + self.block(x)
#--------------------------------------------------------------------#
# CSPdarknet的结构块
# 首先利用ZeroPadding2D和一个步长为2x2的卷积块进行高和宽的压缩
# 然后建立一个大的残差边shortconv、这个大残差边绕过了很多的残差结构
# 主干部分会对num_blocks进行循环,循环内部是残差结构。
# 对于整个CSPdarknet的结构块,就是一个大残差块+内部多个小残差块
#--------------------------------------------------------------------#
class Resblock_body(nn.Module):
def __init__(self, in_channels, out_channels, num_blocks, first):
super(Resblock_body, self).__init__()
#----------------------------------------------------------------#
# 利用一个步长为2x2的卷积块进行高和宽的压缩
#----------------------------------------------------------------#
self.downsample_conv = BasicConv(in_channels, out_channels, 3, stride=2)
if first:
#--------------------------------------------------------------------------#
# 然后建立一个大的残差边self.split_conv0、这个大残差边绕过了很多的残差结构
#--------------------------------------------------------------------------#
self.split_conv0 = BasicConv(out_channels, out_channels, 1)
#----------------------------------------------------------------#
# 主干部分会对num_blocks进行循环,循环内部是残差结构。
#----------------------------------------------------------------#
self.split_conv1 = BasicConv(out_channels, out_channels, 1)
self.blocks_conv = nn.Sequential(
Resblock(channels=out_channels, hidden_channels=out_channels//2),
BasicConv(out_channels, out_channels, 1)
)
self.concat_conv = BasicConv(out_channels*2, out_channels, 1)
else:
#--------------------------------------------------------------------------#
# 然后建立一个大的残差边self.split_conv0、这个大残差边绕过了很多的残差结构
#--------------------------------------------------------------------------#
self.split_conv0 = BasicConv(out_channels, out_channels//2, 1)
#----------------------------------------------------------------#
# 主干部分会对num_blocks进行循环,循环内部是残差结构。
#----------------------------------------------------------------#
self.split_conv1 = BasicConv(out_channels, out_channels//2, 1)
self.blocks_conv = nn.Sequential(
*[Resblock(out_channels//2) for _ in range(num_blocks)],
BasicConv(out_channels//2, out_channels//2, 1)
)
self.concat_conv = BasicConv(out_channels, out_channels, 1)
def forward(self, x):
x = self.downsample_conv(x)
x0 = self.split_conv0(x)
x1 = self.split_conv1(x)
x1 = self.blocks_conv(x1)
#------------------------------------#
# 将大残差边再堆叠回来
#------------------------------------#
x = torch.cat([x1, x0], dim=1)
#------------------------------------#
# 最后对通道数进行整合
#------------------------------------#
x = self.concat_conv(x)
return x
#---------------------------------------------------#
# CSPdarknet53 的主体部分
# 输入为一张416x416x3的图片
# 输出为三个有效特征层
#---------------------------------------------------#
class CSPDarkNet(nn.Module):
def __init__(self, layers):
super(CSPDarkNet, self).__init__()
self.inplanes = 32
# 416,416,3 -> 416,416,32
self.conv1 = BasicConv(3, self.inplanes, kernel_size=3, stride=1)
self.feature_channels = [64, 128, 256, 512, 1024]
self.stages = nn.ModuleList([
# 416,416,32 -> 208,208,64
Resblock_body(self.inplanes, self.feature_channels[0], layers[0], first=True),
# 208,208,64 -> 104,104,128
Resblock_body(self.feature_channels[0], self.feature_channels[1], layers[1], first=False),
# 104,104,128 -> 52,52,256
Resblock_body(self.feature_channels[1], self.feature_channels[2], layers[2], first=False),
# 52,52,256 -> 26,26,512
Resblock_body(self.feature_channels[2], self.feature_channels[3], layers[3], first=False),
# 26,26,512 -> 13,13,1024
Resblock_body(self.feature_channels[3], self.feature_channels[4], layers[4], first=False)
])
self.num_features = 1
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x):
x = self.conv1(x)
x = self.stages[0](x)
x = self.stages[1](x)
out3 = self.stages[2](x)
out4 = self.stages[3](out3)
out5 = self.stages[4](out4)
return out3, out4, out5
def darknet53(pretrained, **kwargs):
model = CSPDarkNet([1, 2, 8, 8, 4])
if pretrained:
if isinstance(pretrained, str):
model.load_state_dict(torch.load(pretrained))
else:
raise Exception("darknet request a pretrained path. got [{}]".format(pretrained))
return model
2.yolo4.py
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from CSPdarknet import darknet53
def conv2d(filter_in, filter_out, kernel_size, stride=1):
pad = (kernel_size - 1) // 2 if kernel_size else 0
return nn.Sequential(OrderedDict([
("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=stride, padding=pad, bias=False)),
("bn", nn.BatchNorm2d(filter_out)),
("relu", nn.LeakyReLU(0.1)),
]))
#---------------------------------------------------#
# SPP结构,利用不同大小的池化核进行池化
# 池化后堆叠
#---------------------------------------------------#
class SpatialPyramidPooling(nn.Module):
def __init__(self, pool_sizes=[5, 9, 13]):
super(SpatialPyramidPooling, self).__init__()
self.maxpools = nn.ModuleList([nn.MaxPool2d(pool_size, 1, pool_size//2) for pool_size in pool_sizes])
def forward(self, x):
features = [maxpool(x) for maxpool in self.maxpools[::-1]]
features = torch.cat(features + [x], dim=1)
return features
#---------------------------------------------------#
# 卷积 + 上采样
#---------------------------------------------------#
class Upsample(nn.Module):
def __init__(self, in_channels, out_channels):
super(Upsample, self).__init__()
self.conv=conv2d(in_channels, out_channels, 1)
def forward(self, x, target_size, inference=False):
x=self.conv(x)
if inference:
return x.view(x.size(0), x.size(1), x.size(2), 1, x.size(3), 1).\
expand(x.size(0), x.size(1), x.size(2), target_size[2] // x.size(2), x.size(3), target_size[3] // x.size(3)).\
contiguous().view(x.size(0), x.size(1), target_size[2], target_size[3])
else:
return F.interpolate(x, size=(target_size[2], target_size[3]), mode='nearest')
# #原始upsample,与Atlas的结果不一致
# class Upsample(nn.Module):
# def __init__(self, in_channels, out_channels):
# super(Upsample, self).__init__()
# self.upsample = nn.Sequential(
# conv2d(in_channels, out_channels, 1),
# nn.Upsample(scale_factor=2, mode='nearest')
# )
# def forward(self, x,):
# x = self.upsample(x)
# return x
#---------------------------------------------------#
# 三次卷积块
#---------------------------------------------------#
def make_three_conv(filters_list, in_filters):
m = nn.Sequential(
conv2d(in_filters, filters_list[0], 1),
conv2d(filters_list[0], filters_list[1], 3),
conv2d(filters_list[1], filters_list[0], 1),
)
return m
#---------------------------------------------------#
# 五次卷积块
#---------------------------------------------------#
def make_five_conv(filters_list, in_filters):
m = nn.Sequential(
conv2d(in_filters, filters_list[0], 1),
conv2d(filters_list[0], filters_list[1], 3),
conv2d(filters_list[1], filters_list[0], 1),
conv2d(filters_list[0], filters_list[1], 3),
conv2d(filters_list[1], filters_list[0], 1),
)
return m
#---------------------------------------------------#
# 最后获得yolov4的输出
#---------------------------------------------------#
def yolo_head(filters_list, in_filters):
m = nn.Sequential(
conv2d(in_filters, filters_list[0], 3),
nn.Conv2d(filters_list[0], filters_list[1], 1),
)
return m
#---------------------------------------------------#
# yolo_body
#---------------------------------------------------#
class YoloBody(nn.Module):
def __init__(self, num_anchors, num_classes):
super(YoloBody, self).__init__()
#---------------------------------------------------#
# 生成CSPdarknet53的主干模型
# 获得三个有效特征层,他们的shape分别是:
# 52,52,256
# 26,26,512
# 13,13,1024
#---------------------------------------------------#
self.backbone = darknet53(None)
self.conv1 = make_three_conv([512,1024],1024)
self.SPP = SpatialPyramidPooling()
self.conv2 = make_three_conv([512,1024],2048)
self.upsample1 = Upsample(512,256)
self.conv_for_P4 = conv2d(512,256,1)
self.make_five_conv1 = make_five_conv([256, 512],512)
self.upsample2 = Upsample(256,128)
self.conv_for_P3 = conv2d(256,128,1)
self.make_five_conv2 = make_five_conv([128, 256],256)
# 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
final_out_filter2 = num_anchors * (5 + num_classes)
self.yolo_head3 = yolo_head([256, final_out_filter2],128)
self.down_sample1 = conv2d(128,256,3,stride=2)
self.make_five_conv3 = make_five_conv([256, 512],512)
# 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
final_out_filter1 = num_anchors * (5 + num_classes)
self.yolo_head2 = yolo_head([512, final_out_filter1],256)
self.down_sample2 = conv2d(256,512,3,stride=2)
self.make_five_conv4 = make_five_conv([512, 1024],1024)
# 3*(5+num_classes)=3*(5+20)=3*(4+1+20)=75
final_out_filter0 = num_anchors * (5 + num_classes)
self.yolo_head1 = yolo_head([1024, final_out_filter0],512)
def forward(self, x):
inference=False
# backbone
x2, x1, x0 = self.backbone(x)
# 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,2048
P5 = self.conv1(x0)
P5 = self.SPP(P5)
# 13,13,2048 -> 13,13,512 -> 13,13,1024 -> 13,13,512
P5 = self.conv2(P5)
# 13,13,512 -> 13,13,256 -> 26,26,256
P5_upsample = self.upsample1(P5, x1.size(), inference)
# 26,26,512 -> 26,26,256
P4 = self.conv_for_P4(x1)
# 26,26,256 + 26,26,256 -> 26,26,512
P4 = torch.cat([P4,P5_upsample],axis=1)
# 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256
P4 = self.make_five_conv1(P4)
# 26,26,256 -> 26,26,128 -> 52,52,128
P4_upsample = self.upsample2(P4, x2.size(), inference)
# 52,52,256 -> 52,52,128
P3 = self.conv_for_P3(x2)
# 52,52,128 + 52,52,128 -> 52,52,256
P3 = torch.cat([P3,P4_upsample],axis=1)
# 52,52,256 -> 52,52,128 -> 52,52,256 -> 52,52,128 -> 52,52,256 -> 52,52,128
P3 = self.make_five_conv2(P3)
# 52,52,128 -> 26,26,256
P3_downsample = self.down_sample1(P3)
# 26,26,256 + 26,26,256 -> 26,26,512
P4 = torch.cat([P3_downsample,P4],axis=1)
# 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256
P4 = self.make_five_conv3(P4)
# 26,26,256 -> 13,13,512
P4_downsample = self.down_sample2(P4)
# 13,13,512 + 13,13,512 -> 13,13,1024
P5 = torch.cat([P4_downsample,P5],axis=1)
# 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512
P5 = self.make_five_conv4(P5)
#---------------------------------------------------#
# 第三个特征层
# y3=(batch_size,75,52,52)
#---------------------------------------------------#
out2 = self.yolo_head3(P3)
#---------------------------------------------------#
# 第二个特征层
# y2=(batch_size,75,26,26)
#---------------------------------------------------#
out1 = self.yolo_head2(P4)
#---------------------------------------------------#
# 第一个特征层
# y1=(batch_size,75,13,13)
#---------------------------------------------------#
out0 = self.yolo_head1(P5)
return out0, out1, out2
3.yolo_training.py
import cv2
from random import shuffle
import numpy as np
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from PIL import Image
from utils import bbox_iou, merge_bboxes
def jaccard(_box_a, _box_b):
b1_x1, b1_x2 = _box_a[:, 0] - _box_a[:, 2] / 2, _box_a[:, 0] + _box_a[:, 2] / 2
b1_y1, b1_y2 = _box_a[:, 1] - _box_a[:, 3] / 2, _box_a[:, 1] + _box_a[:, 3] / 2
b2_x1, b2_x2 = _box_b[:, 0] - _box_b[:, 2] / 2, _box_b[:, 0] + _box_b[:, 2] / 2
b2_y1, b2_y2 = _box_b[:, 1] - _box_b[:, 3] / 2, _box_b[:, 1] + _box_b[:, 3] / 2
box_a = torch.zeros_like(_box_a)
box_b = torch.zeros_like(_box_b)
box_a[:, 0], box_a[:, 1], box_a[:, 2], box_a[:, 3] = b1_x1, b1_y1, b1_x2, b1_y2
box_b[:, 0], box_b[:, 1], box_b[:, 2], box_b[:, 3] = b2_x1, b2_y1, b2_x2, b2_y2
A = box_a.size(0)
B = box_b.size(0)
max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
box_b[:, :2].unsqueeze(0).expand(A, B, 2))
inter = torch.clamp((max_xy - min_xy), min=0)
inter = inter[:, :, 0] * inter[:, :, 1]
# 计算先验框和真实框各自的面积
area_a = ((box_a[:, 2]-box_a[:, 0]) *
(box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
area_b = ((box_b[:, 2]-box_b[:, 0]) *
(box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
# 求IOU
union = area_a + area_b - inter
return inter / union # [A,B]
#---------------------------------------------------#
# 平滑标签
#---------------------------------------------------#
def smooth_labels(y_true, label_smoothing,num_classes):
return y_true * (1.0 - label_smoothing) + label_smoothing / num_classes
def box_ciou(b1, b2):
"""
输入为:
----------
b1: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
b2: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
返回为:
-------
ciou: tensor, shape=(batch, feat_w, feat_h, anchor_num, 1)
"""
# 求出预测框左上角右下角
b1_xy = b1[..., :2]
b1_wh = b1[..., 2:4]
b1_wh_half = b1_wh/2.
b1_mins = b1_xy - b1_wh_half
b1_maxes = b1_xy + b1_wh_half
# 求出真实框左上角右下角
b2_xy = b2[..., :2]
b2_wh = b2[..., 2:4]
b2_wh_half = b2_wh/2.
b2_mins = b2_xy - b2_wh_half
b2_maxes = b2_xy + b2_wh_half
# 求真实框和预测框所有的iou
intersect_mins = torch.max(b1_mins, b2_mins)
intersect_maxes = torch.min(b1_maxes, b2_maxes)
intersect_wh = torch.max(intersect_maxes - intersect_mins, torch.zeros_like(intersect_maxes))
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
union_area = b1_area + b2_area - intersect_area
iou = intersect_area / torch.clamp(union_area,min = 1e-6)
# 计算中心的差距
center_distance = torch.sum(torch.pow((b1_xy - b2_xy), 2), axis=-1)
# 找到包裹两个框的最小框的左上角和右下角
enclose_mins = torch.min(b1_mins, b2_mins)
enclose_maxes = torch.max(b1_maxes, b2_maxes)
enclose_wh = torch.max(enclose_maxes - enclose_mins, torch.zeros_like(intersect_maxes))
# 计算对角线距离
enclose_diagonal = torch.sum(torch.pow(enclose_wh,2), axis=-1)
ciou = iou - 1.0 * (center_distance) / torch.clamp(enclose_diagonal,min = 1e-6)
v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(b1_wh[..., 0]/torch.clamp(b1_wh[..., 1],min = 1e-6)) - torch.atan(b2_wh[..., 0]/torch.clamp(b2_wh[..., 1],min = 1e-6))), 2)
alpha = v / torch.clamp((1.0 - iou + v),min=1e-6)
ciou = ciou - alpha * v
return ciou
def clip_by_tensor(t,t_min,t_max):
t=t.float()
result = (t >= t_min).float() * t + (t < t_min).float() * t_min
result = (result <= t_max).float() * result + (result > t_max).float() * t_max
return result
def MSELoss(pred,target):
return (pred-target)**2
def BCELoss(pred,target):
epsilon = 1e-7
pred = clip_by_tensor(pred, epsilon, 1.0 - epsilon)
output = -target * torch.log(pred) - (1.0 - target) * torch.log(1.0 - pred)
return output
class YOLOLoss(nn.Module):
def __init__(self, anchors, num_classes, img_size, label_smooth=0, cuda=True, normalize=True):
super(YOLOLoss, self).__init__()
self.anchors = anchors
self.num_anchors = len(anchors)
self.num_classes = num_classes
self.bbox_attrs = 5 + num_classes
self.img_size = img_size
self.feature_length = [img_size[0]//32,img_size[0]//16,img_size[0]//8]
self.label_smooth = label_smooth
self.ignore_threshold = 0.5
self.lambda_conf = 1.0
self.lambda_cls = 1.0
self.lambda_loc = 1.0
self.cuda = cuda
self.normalize = normalize
def forward(self, input, targets=None):
#----------------------------------------------------#
# input的shape为 bs, 3*(5+num_classes), 13, 13
# bs, 3*(5+num_classes), 26, 26
# bs, 3*(5+num_classes), 52, 52
#----------------------------------------------------#
#-----------------------#
# 一共多少张图片
#-----------------------#
bs = input.size(0)
#-----------------------#
# 特征层的高
#-----------------------#
in_h = input.size(2)
#-----------------------#
# 特征层的宽
#-----------------------#
in_w = input.size(3)
#-----------------------------------------------------------------------#
# 计算步长
# 每一个特征点对应原来的图片上多少个像素点
# 如果特征层为13x13的话,一个特征点就对应原来的图片上的32个像素点
# 如果特征层为26x26的话,一个特征点就对应原来的图片上的16个像素点
# 如果特征层为52x52的话,一个特征点就对应原来的图片上的8个像素点
# stride_h = stride_w = 32、16、8
#-----------------------------------------------------------------------#
stride_h = self.img_size[1] / in_h
stride_w = self.img_size[0] / in_w
#-------------------------------------------------#
# 此时获得的scaled_anchors大小是相对于特征层的
#-------------------------------------------------#
scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in self.anchors]
#-----------------------------------------------#
# 输入的input一共有三个,他们的shape分别是
# batch_size, 3, 13, 13, 5 + num_classes
# batch_size, 3, 26, 26, 5 + num_classes
# batch_size, 3, 52, 52, 5 + num_classes
#-----------------------------------------------#
prediction = input.view(bs, int(self.num_anchors/3),
self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous()
# 获得置信度,是否有物体
conf = torch.sigmoid(prediction[..., 4])
# 种类置信度
pred_cls = torch.sigmoid(prediction[..., 5:])
#---------------------------------------------------------------#
# 找到哪些先验框内部包含物体
# 利用真实框和先验框计算交并比
# mask batch_size, 3, in_h, in_w 有目标的特征点
# noobj_mask batch_size, 3, in_h, in_w 无目标的特征点
# t_box batch_size, 3, in_h, in_w, 4 中心宽高的真实值
# tconf batch_size, 3, in_h, in_w 置信度真实值
# tcls batch_size, 3, in_h, in_w, num_classes 种类真实值
#----------------------------------------------------------------#
mask, noobj_mask, t_box, tconf, tcls, box_loss_scale_x, box_loss_scale_y = self.get_target(targets, scaled_anchors,in_w, in_h,self.ignore_threshold)
#---------------------------------------------------------------#
# 将预测结果进行解码,判断预测结果和真实值的重合程度
# 如果重合程度过大则忽略,因为这些特征点属于预测比较准确的特征点
# 作为负样本不合适
#----------------------------------------------------------------#
noobj_mask, pred_boxes_for_ciou = self.get_ignore(prediction, targets, scaled_anchors, in_w, in_h, noobj_mask)
if self.cuda:
mask, noobj_mask = mask.cuda(), noobj_mask.cuda()
box_loss_scale_x, box_loss_scale_y= box_loss_scale_x.cuda(), box_loss_scale_y.cuda()
tconf, tcls = tconf.cuda(), tcls.cuda()
pred_boxes_for_ciou = pred_boxes_for_ciou.cuda()
t_box = t_box.cuda()
box_loss_scale = 2 - box_loss_scale_x * box_loss_scale_y
#---------------------------------------------------------------#
# 计算预测结果和真实结果的CIOU
#----------------------------------------------------------------#
ciou = (1 - box_ciou( pred_boxes_for_ciou[mask.bool()], t_box[mask.bool()]))* box_loss_scale[mask.bool()]
loss_loc = torch.sum(ciou)
# 计算置信度的loss
loss_conf = torch.sum(BCELoss(conf, mask) * mask) + \
torch.sum(BCELoss(conf, mask) * noobj_mask)
loss_cls = torch.sum(BCELoss(pred_cls[mask == 1], smooth_labels(tcls[mask == 1],self.label_smooth,self.num_classes)))
loss = loss_conf * self.lambda_conf + loss_cls * self.lambda_cls + loss_loc * self.lambda_loc
if self.normalize:
num_pos = torch.sum(mask)
num_pos = torch.max(num_pos, torch.ones_like(num_pos))
else:
num_pos = bs/3
return loss, num_pos
def get_target(self, target, anchors, in_w, in_h, ignore_threshold):
#-----------------------------------------------------#
# 计算一共有多少张图片
#-----------------------------------------------------#
bs = len(target)
#-------------------------------------------------------#
# 获得当前特征层先验框所属的编号,方便后面对先验框筛选
#-------------------------------------------------------#
anchor_index = [[0,1,2],[3,4,5],[6,7,8]][self.feature_length.index(in_w)]
subtract_index = [0,3,6][self.feature_length.index(in_w)]
#-------------------------------------------------------#
# 创建全是0或者全是1的阵列
#-------------------------------------------------------#
mask = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
noobj_mask = torch.ones(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
tx = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
ty = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
tw = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
th = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
t_box = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, 4, requires_grad=False)
tconf = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
tcls = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, self.num_classes, requires_grad=False)
box_loss_scale_x = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
box_loss_scale_y = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
for b in range(bs):
if len(target[b])==0:
continue
#-------------------------------------------------------#
# 计算出正样本在特征层上的中心点
#-------------------------------------------------------#
gxs = target[b][:, 0:1] * in_w
gys = target[b][:, 1:2] * in_h
#-------------------------------------------------------#
# 计算出正样本相对于特征层的宽高
#-------------------------------------------------------#
gws = target[b][:, 2:3] * in_w
ghs = target[b][:, 3:4] * in_h
#-------------------------------------------------------#
# 计算出正样本属于特征层的哪个特征点
#-------------------------------------------------------#
gis = torch.floor(gxs)
gjs = torch.floor(gys)
#-------------------------------------------------------#
# 将真实框转换一个形式
# num_true_box, 4
#-------------------------------------------------------#
gt_box = torch.FloatTensor(torch.cat([torch.zeros_like(gws), torch.zeros_like(ghs), gws, ghs], 1))
#-------------------------------------------------------#
# 将先验框转换一个形式
# 9, 4
#-------------------------------------------------------#
anchor_shapes = torch.FloatTensor(torch.cat((torch.zeros((self.num_anchors, 2)), torch.FloatTensor(anchors)), 1))
#-------------------------------------------------------#
# 计算交并比
# num_true_box, 9
#-------------------------------------------------------#
anch_ious = jaccard(gt_box, anchor_shapes)
#-------------------------------------------------------#
# 计算重合度最大的先验框是哪个
# num_true_box,
#-------------------------------------------------------#
best_ns = torch.argmax(anch_ious,dim=-1)
for i, best_n in enumerate(best_ns):
if best_n not in anchor_index:
continue
#-------------------------------------------------------------#
# 取出各类坐标:
# gi和gj代表的是真实框对应的特征点的x轴y轴坐标
# gx和gy代表真实框的x轴和y轴坐标
# gw和gh代表真实框的宽和高
#-------------------------------------------------------------#
gi = gis[i].long()
gj = gjs[i].long()
gx = gxs[i]
gy = gys[i]
gw = gws[i]
gh = ghs[i]
if (gj < in_h) and (gi < in_w):
best_n = best_n - subtract_index
#----------------------------------------#
# noobj_mask代表无目标的特征点
#----------------------------------------#
noobj_mask[b, best_n, gj, gi] = 0
#----------------------------------------#
# mask代表有目标的特征点
#----------------------------------------#
mask[b, best_n, gj, gi] = 1
#----------------------------------------#
# tx、ty代表中心的真实值
#----------------------------------------#
tx[b, best_n, gj, gi] = gx
ty[b, best_n, gj, gi] = gy
#----------------------------------------#
# tw、th代表宽高的真实值
#----------------------------------------#
tw[b, best_n, gj, gi] = gw
th[b, best_n, gj, gi] = gh
#----------------------------------------#
# 用于获得xywh的比例
# 大目标loss权重小,小目标loss权重大
#----------------------------------------#
box_loss_scale_x[b, best_n, gj, gi] = target[b][i, 2]
box_loss_scale_y[b, best_n, gj, gi] = target[b][i, 3]
#----------------------------------------#
# tconf代表物体置信度
#----------------------------------------#
tconf[b, best_n, gj, gi] = 1
#----------------------------------------#
# tcls代表种类置信度
#----------------------------------------#
tcls[b, best_n, gj, gi, target[b][i, 4].long()] = 1
else:
print('Step {0} out of bound'.format(b))
print('gj: {0}, height: {1} | gi: {2}, width: {3}'.format(gj, in_h, gi, in_w))
continue
t_box[...,0] = tx
t_box[...,1] = ty
t_box[...,2] = tw
t_box[...,3] = th
return mask, noobj_mask, t_box, tconf, tcls, box_loss_scale_x, box_loss_scale_y
def get_ignore(self,prediction,target,scaled_anchors,in_w, in_h,noobj_mask):
#-----------------------------------------------------#
# 计算一共有多少张图片
#-----------------------------------------------------#
bs = len(target)
#-------------------------------------------------------#
# 获得当前特征层先验框所属的编号,方便后面对先验框筛选
#-------------------------------------------------------#
anchor_index = [[0,1,2],[3,4,5],[6,7,8]][self.feature_length.index(in_w)]
scaled_anchors = np.array(scaled_anchors)[anchor_index]
# 先验框的中心位置的调整参数
x = torch.sigmoid(prediction[..., 0])
y = torch.sigmoid(prediction[..., 1])
# 先验框的宽高调整参数
w = prediction[..., 2] # Width
h = prediction[..., 3] # Height
FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
# 生成网格,先验框中心,网格左上角
grid_x = torch.linspace(0, in_w - 1, in_w).repeat(in_h, 1).repeat(
int(bs*self.num_anchors/3), 1, 1).view(x.shape).type(FloatTensor)
grid_y = torch.linspace(0, in_h - 1, in_h).repeat(in_w, 1).t().repeat(
int(bs*self.num_anchors/3), 1, 1).view(y.shape).type(FloatTensor)
# 生成先验框的宽高
anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape)
anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape)
#-------------------------------------------------------#
# 计算调整后的先验框中心与宽高
#-------------------------------------------------------#
pred_boxes = FloatTensor(prediction[..., :4].shape)
pred_boxes[..., 0] = x + grid_x
pred_boxes[..., 1] = y + grid_y
pred_boxes[..., 2] = torch.exp(w) * anchor_w
pred_boxes[..., 3] = torch.exp(h) * anchor_h
for i in range(bs):
pred_boxes_for_ignore = pred_boxes[i]
#-------------------------------------------------------#
# 将预测结果转换一个形式
# pred_boxes_for_ignore num_anchors, 4
#-------------------------------------------------------#
pred_boxes_for_ignore = pred_boxes_for_ignore.view(-1, 4)
#-------------------------------------------------------#
# 计算真实框,并把真实框转换成相对于特征层的大小
# gt_box num_true_box, 4
#-------------------------------------------------------#
if len(target[i]) > 0:
gx = target[i][:, 0:1] * in_w
gy = target[i][:, 1:2] * in_h
gw = target[i][:, 2:3] * in_w
gh = target[i][:, 3:4] * in_h
gt_box = torch.FloatTensor(torch.cat([gx, gy, gw, gh],-1)).type(FloatTensor)
#-------------------------------------------------------#
# 计算交并比
# anch_ious num_true_box, num_anchors
#-------------------------------------------------------#
anch_ious = jaccard(gt_box, pred_boxes_for_ignore)
#-------------------------------------------------------#
# 每个先验框对应真实框的最大重合度
# anch_ious_max num_anchors
#-------------------------------------------------------#
anch_ious_max, _ = torch.max(anch_ious,dim=0)
anch_ious_max = anch_ious_max.view(pred_boxes[i].size()[:3])
noobj_mask[i][anch_ious_max>self.ignore_threshold] = 0
return noobj_mask, pred_boxes
def rand(a=0, b=1):
return np.random.rand()*(b-a) + a
class Generator(object):
def __init__(self,batch_size,
train_lines, image_size,
):
self.batch_size = batch_size
self.train_lines = train_lines
self.train_batches = len(train_lines)
self.image_size = image_size
def get_random_data(self, annotation_line, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5, random=True):
'''r实时数据增强的随机预处理'''
line = annotation_line.split()
image = Image.open(line[0])
iw, ih = image.size
h, w = input_shape
box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])
if not random:
scale = min(w/iw, h/ih)
nw = int(iw*scale)
nh = int(ih*scale)
dx = (w-nw)//2
dy = (h-nh)//2
image = image.resize((nw,nh), Image.BICUBIC)
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
image_data = np.array(new_image, np.float32)
# 调整目标框坐标
box_data = np.zeros((len(box), 5))
if len(box) > 0:
np.random.shuffle(box)
box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
box[:, 0:2][box[:, 0:2] < 0] = 0
box[:, 2][box[:, 2] > w] = w
box[:, 3][box[:, 3] > h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w > 1, box_h > 1)] # 保留有效框
box_data = np.zeros((len(box), 5))
box_data[:len(box)] = box
return image_data, box_data
# resize image
new_ar = w/h * rand(1-jitter,1+jitter)/rand(1-jitter,1+jitter)
scale = rand(.25, 2)
if new_ar < 1:
nh = int(scale*h)
nw = int(nh*new_ar)
else:
nw = int(scale*w)
nh = int(nw/new_ar)
image = image.resize((nw,nh), Image.BICUBIC)
# place image
dx = int(rand(0, w-nw))
dy = int(rand(0, h-nh))
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
image = new_image
# flip image or not
flip = rand()<.5
if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)
# distort image
hue = rand(-hue, hue)
sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
val = rand(1, val) if rand()<.5 else 1/rand(1, val)
x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
x[..., 0] += hue*360
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x[:,:, 0]>360, 0] = 360
x[:, :, 1:][x[:, :, 1:]>1] = 1
x[x<0] = 0
image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255
# correct boxes
box_data = np.zeros((len(box),5))
if len(box)>0:
np.random.shuffle(box)
box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
if flip: box[:, [0,2]] = w - box[:, [2,0]]
box[:, 0:2][box[:, 0:2]<0] = 0
box[:, 2][box[:, 2]>w] = w
box[:, 3][box[:, 3]>h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box
box_data = np.zeros((len(box),5))
box_data[:len(box)] = box
return image_data, box_data
def get_random_data_with_Mosaic(self, annotation_line, input_shape, hue=.1, sat=1.5, val=1.5):
'''random preprocessing for real-time data augmentation'''
h, w = input_shape
min_offset_x = 0.3
min_offset_y = 0.3
scale_low = 1-min(min_offset_x,min_offset_y)
scale_high = scale_low+0.2
image_datas = []
box_datas = []
index = 0
place_x = [0,0,int(w*min_offset_x),int(w*min_offset_x)]
place_y = [0,int(h*min_offset_y),int(h*min_offset_y),0]
for line in annotation_line:
# 每一行进行分割
line_content = line.split()
# 打开图片
image = Image.open(line_content[0])
image = image.convert("RGB")
# 图片的大小
iw, ih = image.size
# 保存框的位置
box = np.array([np.array(list(map(int,box.split(',')))) for box in line_content[1:]])
# 是否翻转图片
flip = rand()<.5
if flip and len(box)>0:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
box[:, [0,2]] = iw - box[:, [2,0]]
# 对输入进来的图片进行缩放
new_ar = w/h
scale = rand(scale_low, scale_high)
if new_ar < 1:
nh = int(scale*h)
nw = int(nh*new_ar)
else:
nw = int(scale*w)
nh = int(nw/new_ar)
image = image.resize((nw,nh), Image.BICUBIC)
# 进行色域变换
hue = rand(-hue, hue)
sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
val = rand(1, val) if rand()<.5 else 1/rand(1, val)
x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
x[..., 0] += hue*360
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x[:,:, 0]>360, 0] = 360
x[:, :, 1:][x[:, :, 1:]>1] = 1
x[x<0] = 0
image = cv2.cvtColor(x, cv2.COLOR_HSV2RGB) # numpy array, 0 to 1
image = Image.fromarray((image*255).astype(np.uint8))
# 将图片进行放置,分别对应四张分割图片的位置
dx = place_x[index]
dy = place_y[index]
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
image_data = np.array(new_image)
index = index + 1
box_data = []
# 对box进行重新处理
if len(box)>0:
np.random.shuffle(box)
box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
box[:, 0:2][box[:, 0:2]<0] = 0
box[:, 2][box[:, 2]>w] = w
box[:, 3][box[:, 3]>h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w>1, box_h>1)]
box_data = np.zeros((len(box),5))
box_data[:len(box)] = box
image_datas.append(image_data)
box_datas.append(box_data)
# 将图片分割,放在一起
cutx = np.random.randint(int(w*min_offset_x), int(w*(1 - min_offset_x)))
cuty = np.random.randint(int(h*min_offset_y), int(h*(1 - min_offset_y)))
new_image = np.zeros([h,w,3])
new_image[:cuty, :cutx, :] = image_datas[0][:cuty, :cutx, :]
new_image[cuty:, :cutx, :] = image_datas[1][cuty:, :cutx, :]
new_image[cuty:, cutx:, :] = image_datas[2][cuty:, cutx:, :]
new_image[:cuty, cutx:, :] = image_datas[3][:cuty, cutx:, :]
# 对框进行进一步的处理
new_boxes = np.array(merge_bboxes(box_datas, cutx, cuty))
if len(new_boxes) == 0:
return new_image, []
if (new_boxes[:,:4]>0).any():
return new_image, new_boxes
else:
return new_image, []
def generate(self, train = True, mosaic = True):
while True:
shuffle(self.train_lines)
lines = self.train_lines
inputs = []
targets = []
flag = True
n = len(lines)
for i in range(len(lines)):
if mosaic == True:
if flag and (i+4) < n:
img,y = self.get_random_data_with_Mosaic(lines[i:i+4], self.image_size[0:2])
i = (i+4) % n
else:
img,y = self.get_random_data(lines[i], self.image_size[0:2], random=train)
i = (i+1) % n
flag = bool(1-flag)
else:
img,y = self.get_random_data(lines[i], self.image_size[0:2], random=train)
i = (i+1) % n
if len(y)!=0:
boxes = np.array(y[:,:4],dtype=np.float32)
boxes[:,0] = boxes[:,0]/self.image_size[1]
boxes[:,1] = boxes[:,1]/self.image_size[0]
boxes[:,2] = boxes[:,2]/self.image_size[1]
boxes[:,3] = boxes[:,3]/self.image_size[0]
boxes = np.maximum(np.minimum(boxes,1),0)
boxes[:,2] = boxes[:,2] - boxes[:,0]
boxes[:,3] = boxes[:,3] - boxes[:,1]
boxes[:,0] = boxes[:,0] + boxes[:,2]/2
boxes[:,1] = boxes[:,1] + boxes[:,3]/2
y = np.concatenate([boxes,y[:,-1:]],axis=-1)
img = np.array(img,dtype = np.float32)
inputs.append(np.transpose(img/255.0,(2,0,1)))
targets.append(np.array(y,dtype = np.float32))
if len(targets) == self.batch_size:
tmp_inp = np.array(inputs)
tmp_targets = targets
inputs = []
targets = []
yield tmp_inp, tmp_targets
4.dataloader.py
from random import shuffle
import numpy as np
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from PIL import Image
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from utils import bbox_iou, merge_bboxes
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from yolo_training import Generator
import cv2
class YoloDataset(Dataset):
def __init__(self, train_lines, image_size, mosaic=True, is_train=True):
super(YoloDataset, self).__init__()
self.train_lines = train_lines
self.train_batches = len(train_lines)
self.image_size = image_size
self.mosaic = mosaic
self.flag = True
self.is_train = is_train
def __len__(self):
return self.train_batches
def rand(self, a=0, b=1):
return np.random.rand() * (b - a) + a
def get_random_data(self, annotation_line, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5, random=True):
"""实时数据增强的随机预处理"""
line = annotation_line.split()
image = Image.open(line[0])
iw, ih = image.size
h, w = input_shape
box = np.array([np.array(list(map(int, box.split(',')))) for box in line[1:]])
if not random:
scale = min(w/iw, h/ih)
nw = int(iw*scale)
nh = int(ih*scale)
dx = (w-nw)//2
dy = (h-nh)//2
image = image.resize((nw,nh), Image.BICUBIC)
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
image_data = np.array(new_image, np.float32)
# 调整目标框坐标
box_data = np.zeros((len(box), 5))
if len(box) > 0:
np.random.shuffle(box)
box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
box[:, 0:2][box[:, 0:2] < 0] = 0
box[:, 2][box[:, 2] > w] = w
box[:, 3][box[:, 3] > h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w > 1, box_h > 1)] # 保留有效框
box_data = np.zeros((len(box), 5))
box_data[:len(box)] = box
return image_data, box_data
# 调整图片大小
new_ar = w / h * self.rand(1 - jitter, 1 + jitter) / self.rand(1 - jitter, 1 + jitter)
scale = self.rand(.25, 2)
if new_ar < 1:
nh = int(scale * h)
nw = int(nh * new_ar)
else:
nw = int(scale * w)
nh = int(nw / new_ar)
image = image.resize((nw, nh), Image.BICUBIC)
# 放置图片
dx = int(self.rand(0, w - nw))
dy = int(self.rand(0, h - nh))
new_image = Image.new('RGB', (w, h),
(np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)))
new_image.paste(image, (dx, dy))
image = new_image
# 是否翻转图片
flip = self.rand() < .5
if flip:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
# 色域变换
hue = self.rand(-hue, hue)
sat = self.rand(1, sat) if self.rand() < .5 else 1 / self.rand(1, sat)
val = self.rand(1, val) if self.rand() < .5 else 1 / self.rand(1, val)
x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
x[..., 0] += hue*360
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x[:,:, 0]>360, 0] = 360
x[:, :, 1:][x[:, :, 1:]>1] = 1
x[x<0] = 0
image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255
# 调整目标框坐标
box_data = np.zeros((len(box), 5))
if len(box) > 0:
np.random.shuffle(box)
box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
if flip:
box[:, [0, 2]] = w - box[:, [2, 0]]
box[:, 0:2][box[:, 0:2] < 0] = 0
box[:, 2][box[:, 2] > w] = w
box[:, 3][box[:, 3] > h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w > 1, box_h > 1)] # 保留有效框
box_data = np.zeros((len(box), 5))
box_data[:len(box)] = box
return image_data, box_data
def get_random_data_with_Mosaic(self, annotation_line, input_shape, hue=.1, sat=1.5, val=1.5):
h, w = input_shape
min_offset_x = 0.3
min_offset_y = 0.3
scale_low = 1 - min(min_offset_x, min_offset_y)
scale_high = scale_low + 0.2
image_datas = []
box_datas = []
index = 0
place_x = [0, 0, int(w * min_offset_x), int(w * min_offset_x)]
place_y = [0, int(h * min_offset_y), int(h * min_offset_y), 0]
for line in annotation_line:
# 每一行进行分割
line_content = line.split()
# 打开图片
image = Image.open(line_content[0])
image = image.convert("RGB")
# 图片的大小
iw, ih = image.size
# 保存框的位置
box = np.array([np.array(list(map(int, box.split(',')))) for box in line_content[1:]])
# 是否翻转图片
flip = self.rand() < .5
if flip and len(box) > 0:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
box[:, [0, 2]] = iw - box[:, [2, 0]]
# 对输入进来的图片进行缩放
new_ar = w / h
scale = self.rand(scale_low, scale_high)
if new_ar < 1:
nh = int(scale * h)
nw = int(nh * new_ar)
else:
nw = int(scale * w)
nh = int(nw / new_ar)
image = image.resize((nw, nh), Image.BICUBIC)
# 进行色域变换
hue = self.rand(-hue, hue)
sat = self.rand(1, sat) if self.rand() < .5 else 1 / self.rand(1, sat)
val = self.rand(1, val) if self.rand() < .5 else 1 / self.rand(1, val)
x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
x[..., 0] += hue*360
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x[:,:, 0]>360, 0] = 360
x[:, :, 1:][x[:, :, 1:]>1] = 1
x[x<0] = 0
image = cv2.cvtColor(x, cv2.COLOR_HSV2RGB) # numpy array, 0 to 1
image = Image.fromarray((image * 255).astype(np.uint8))
# 将图片进行放置,分别对应四张分割图片的位置
dx = place_x[index]
dy = place_y[index]
new_image = Image.new('RGB', (w, h),
(np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)))
new_image.paste(image, (dx, dy))
image_data = np.array(new_image)
index = index + 1
box_data = []
# 对box进行重新处理
if len(box) > 0:
np.random.shuffle(box)
box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
box[:, 0:2][box[:, 0:2] < 0] = 0
box[:, 2][box[:, 2] > w] = w
box[:, 3][box[:, 3] > h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w > 1, box_h > 1)]
box_data = np.zeros((len(box), 5))
box_data[:len(box)] = box
image_datas.append(image_data)
box_datas.append(box_data)
# 将图片分割,放在一起
cutx = np.random.randint(int(w * min_offset_x), int(w * (1 - min_offset_x)))
cuty = np.random.randint(int(h * min_offset_y), int(h * (1 - min_offset_y)))
new_image = np.zeros([h, w, 3])
new_image[:cuty, :cutx, :] = image_datas[0][:cuty, :cutx, :]
new_image[cuty:, :cutx, :] = image_datas[1][cuty:, :cutx, :]
new_image[cuty:, cutx:, :] = image_datas[2][cuty:, cutx:, :]
new_image[:cuty, cutx:, :] = image_datas[3][:cuty, cutx:, :]
# 对框进行进一步的处理
new_boxes = np.array(merge_bboxes(box_datas, cutx, cuty))
return new_image, new_boxes
def __getitem__(self, index):
lines = self.train_lines
n = self.train_batches
index = index % n
if self.mosaic:
if self.flag and (index + 4) < n:
img, y = self.get_random_data_with_Mosaic(lines[index:index + 4], self.image_size[0:2])
else:
img, y = self.get_random_data(lines[index], self.image_size[0:2], random=self.is_train)
self.flag = bool(1-self.flag)
else:
img, y = self.get_random_data(lines[index], self.image_size[0:2], random=self.is_train)
if len(y) != 0:
# 从坐标转换成0~1的百分比
boxes = np.array(y[:, :4], dtype=np.float32)
boxes[:, 0] = boxes[:, 0] / self.image_size[1]
boxes[:, 1] = boxes[:, 1] / self.image_size[0]
boxes[:, 2] = boxes[:, 2] / self.image_size[1]
boxes[:, 3] = boxes[:, 3] / self.image_size[0]
boxes = np.maximum(np.minimum(boxes, 1), 0)
boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
boxes[:, 0] = boxes[:, 0] + boxes[:, 2] / 2
boxes[:, 1] = boxes[:, 1] + boxes[:, 3] / 2
y = np.concatenate([boxes, y[:, -1:]], axis=-1)
img = np.array(img, dtype=np.float32)
tmp_inp = np.transpose(img / 255.0, (2, 0, 1))
tmp_targets = np.array(y, dtype=np.float32)
return tmp_inp, tmp_targets
# DataLoader中collate_fn使用
def yolo_dataset_collate(batch):
images = []
bboxes = []
for img, box in batch:
images.append(img)
bboxes.append(box)
images = np.array(images)
return images, bboxes
5.utils.py
from __future__ import division
import math
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image, ImageDraw, ImageFont
from torch.autograd import Variable
from torchvision.ops import nms
class DecodeBox(nn.Module):
def __init__(self, anchors, num_classes, img_size):
super(DecodeBox, self).__init__()
#-----------------------------------------------------------#
# 13x13的特征层对应的anchor是[142, 110], [192, 243], [459, 401]
# 26x26的特征层对应的anchor是[36, 75], [76, 55], [72, 146]
# 52x52的特征层对应的anchor是[12, 16], [19, 36], [40, 28]
#-----------------------------------------------------------#
self.anchors = anchors
self.num_anchors = len(anchors)
self.num_classes = num_classes
self.bbox_attrs = 5 + num_classes
self.img_size = img_size
def forward(self, input):
#-----------------------------------------------#
# 输入的input一共有三个,他们的shape分别是
# batch_size, 255, 13, 13
# batch_size, 255, 26, 26
# batch_size, 255, 52, 52
#-----------------------------------------------#
batch_size = input.size(0)
input_height = input.size(2)
input_width = input.size(3)
#-----------------------------------------------#
# 输入为416x416时
# stride_h = stride_w = 32、16、8
#-----------------------------------------------#
stride_h = self.img_size[1] / input_height
stride_w = self.img_size[0] / input_width
#-------------------------------------------------#
# 此时获得的scaled_anchors大小是相对于特征层的
#-------------------------------------------------#
scaled_anchors = [(anchor_width / stride_w, anchor_height / stride_h) for anchor_width, anchor_height in self.anchors]
#-----------------------------------------------#
# 输入的input一共有三个,他们的shape分别是
# batch_size, 3, 13, 13, 85
# batch_size, 3, 26, 26, 85
# batch_size, 3, 52, 52, 85
#-----------------------------------------------#
prediction = input.view(batch_size, self.num_anchors,
self.bbox_attrs, input_height, input_width).permute(0, 1, 3, 4, 2).contiguous()
# 先验框的中心位置的调整参数
x = torch.sigmoid(prediction[..., 0])
y = torch.sigmoid(prediction[..., 1])
# 先验框的宽高调整参数
w = prediction[..., 2]
h = prediction[..., 3]
# 获得置信度,是否有物体
conf = torch.sigmoid(prediction[..., 4])
# 种类置信度
pred_cls = torch.sigmoid(prediction[..., 5:])
FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
#----------------------------------------------------------#
# 生成网格,先验框中心,网格左上角
# batch_size,3,13,13
#----------------------------------------------------------#
grid_x = torch.linspace(0, input_width - 1, input_width).repeat(input_height, 1).repeat(
batch_size * self.num_anchors, 1, 1).view(x.shape).type(FloatTensor)
grid_y = torch.linspace(0, input_height - 1, input_height).repeat(input_width, 1).t().repeat(
batch_size * self.num_anchors, 1, 1).view(y.shape).type(FloatTensor)
#----------------------------------------------------------#
# 按照网格格式生成先验框的宽高
# batch_size,3,13,13
#----------------------------------------------------------#
anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
anchor_w = anchor_w.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(w.shape)
anchor_h = anchor_h.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(h.shape)
#----------------------------------------------------------#
# 利用预测结果对先验框进行调整
# 首先调整先验框的中心,从先验框中心向右下角偏移
# 再调整先验框的宽高。
#----------------------------------------------------------#
pred_boxes = FloatTensor(prediction[..., :4].shape)
pred_boxes[..., 0] = x.data + grid_x
pred_boxes[..., 1] = y.data + grid_y
pred_boxes[..., 2] = torch.exp(w.data) * anchor_w
pred_boxes[..., 3] = torch.exp(h.data) * anchor_h
# fig = plt.figure()
# ax = fig.add_subplot(121)
# if input_height==13:
# plt.ylim(0,13)
# plt.xlim(0,13)
# elif input_height==26:
# plt.ylim(0,26)
# plt.xlim(0,26)
# elif input_height==52:
# plt.ylim(0,52)
# plt.xlim(0,52)
# plt.scatter(grid_x.cpu(),grid_y.cpu())
# anchor_left = grid_x - anchor_w/2
# anchor_top = grid_y - anchor_h/2
# rect1 = plt.Rectangle([anchor_left[0,0,5,5],anchor_top[0,0,5,5]],anchor_w[0,0,5,5],anchor_h[0,0,5,5],color="r",fill=False)
# rect2 = plt.Rectangle([anchor_left[0,1,5,5],anchor_top[0,1,5,5]],anchor_w[0,1,5,5],anchor_h[0,1,5,5],color="r",fill=False)
# rect3 = plt.Rectangle([anchor_left[0,2,5,5],anchor_top[0,2,5,5]],anchor_w[0,2,5,5],anchor_h[0,2,5,5],color="r",fill=False)
# ax.add_patch(rect1)
# ax.add_patch(rect2)
# ax.add_patch(rect3)
# ax = fig.add_subplot(122)
# if input_height==13:
# plt.ylim(0,13)
# plt.xlim(0,13)
# elif input_height==26:
# plt.ylim(0,26)
# plt.xlim(0,26)
# elif input_height==52:
# plt.ylim(0,52)
# plt.xlim(0,52)
# plt.scatter(grid_x.cpu(),grid_y.cpu())
# plt.scatter(pred_boxes[0,:,5,5,0].cpu(),pred_boxes[0,:,5,5,1].cpu(),c='r')
# pre_left = pred_boxes[...,0] - pred_boxes[...,2]/2
# pre_top = pred_boxes[...,1] - pred_boxes[...,3]/2
# rect1 = plt.Rectangle([pre_left[0,0,5,5],pre_top[0,0,5,5]],pred_boxes[0,0,5,5,2],pred_boxes[0,0,5,5,3],color="r",fill=False)
# rect2 = plt.Rectangle([pre_left[0,1,5,5],pre_top[0,1,5,5]],pred_boxes[0,1,5,5,2],pred_boxes[0,1,5,5,3],color="r",fill=False)
# rect3 = plt.Rectangle([pre_left[0,2,5,5],pre_top[0,2,5,5]],pred_boxes[0,2,5,5,2],pred_boxes[0,2,5,5,3],color="r",fill=False)
# ax.add_patch(rect1)
# ax.add_patch(rect2)
# ax.add_patch(rect3)
# plt.show()
#----------------------------------------------------------#
# 将输出结果调整成相对于输入图像大小
#----------------------------------------------------------#
_scale = torch.Tensor([stride_w, stride_h] * 2).type(FloatTensor)
output = torch.cat((pred_boxes.view(batch_size, -1, 4) * _scale,
conf.view(batch_size, -1, 1), pred_cls.view(batch_size, -1, self.num_classes)), -1)
return output.data
def letterbox_image(image, size):
iw, ih = image.size
w, h = size
scale = min(w/iw, h/ih)
nw = int(iw*scale)
nh = int(ih*scale)
image = image.resize((nw,nh), Image.BICUBIC)
new_image = Image.new('RGB', size, (128,128,128))
new_image.paste(image, ((w-nw)//2, (h-nh)//2))
return new_image
def yolo_correct_boxes(top, left, bottom, right, input_shape, image_shape):
new_shape = image_shape*np.min(input_shape/image_shape)
offset = (input_shape-new_shape)/2./input_shape
scale = input_shape/new_shape
box_yx = np.concatenate(((top+bottom)/2,(left+right)/2),axis=-1)/input_shape
box_hw = np.concatenate((bottom-top,right-left),axis=-1)/input_shape
box_yx = (box_yx - offset) * scale
box_hw *= scale
box_mins = box_yx - (box_hw / 2.)
box_maxes = box_yx + (box_hw / 2.)
boxes = np.concatenate([
box_mins[:, 0:1],
box_mins[:, 1:2],
box_maxes[:, 0:1],
box_maxes[:, 1:2]
],axis=-1)
boxes *= np.concatenate([image_shape, image_shape],axis=-1)
return boxes
def bbox_iou(box1, box2, x1y1x2y2=True):
"""
计算IOU
"""
if not x1y1x2y2:
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
else:
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
inter_rect_x1 = torch.max(b1_x1, b2_x1)
inter_rect_y1 = torch.max(b1_y1, b2_y1)
inter_rect_x2 = torch.min(b1_x2, b2_x2)
inter_rect_y2 = torch.min(b1_y2, b2_y2)
inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * \
torch.clamp(inter_rect_y2 - inter_rect_y1 + 1, min=0)
b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)
iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)
return iou
def non_max_suppression(prediction, num_classes, conf_thres=0.5, nms_thres=0.4):
#----------------------------------------------------------#
# 将预测结果的格式转换成左上角右下角的格式。
# prediction [batch_size, num_anchors, 85]
#----------------------------------------------------------#
box_corner = prediction.new(prediction.shape)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]
output = [None for _ in range(len(prediction))]
for image_i, image_pred in enumerate(prediction):
#----------------------------------------------------------#
# 对种类预测部分取max。
# class_conf [num_anchors, 1] 种类置信度
# class_pred [num_anchors, 1] 种类
#----------------------------------------------------------#
class_conf, class_pred = torch.max(image_pred[:, 5:5 + num_classes], 1, keepdim=True)
#----------------------------------------------------------#
# 利用置信度进行第一轮筛选
#----------------------------------------------------------#
conf_mask = (image_pred[:, 4] * class_conf[:, 0] >= conf_thres).squeeze()
#----------------------------------------------------------#
# 根据置信度进行预测结果的筛选
#----------------------------------------------------------#
image_pred = image_pred[conf_mask]
class_conf = class_conf[conf_mask]
class_pred = class_pred[conf_mask]
if not image_pred.size(0):
continue
#-------------------------------------------------------------------------#
# detections [num_anchors, 7]
# 7的内容为:x1, y1, x2, y2, obj_conf, class_conf, class_pred
#-------------------------------------------------------------------------#
detections = torch.cat((image_pred[:, :5], class_conf.float(), class_pred.float()), 1)
#------------------------------------------#
# 获得预测结果中包含的所有种类
#------------------------------------------#
unique_labels = detections[:, -1].cpu().unique()
if prediction.is_cuda:
unique_labels = unique_labels.cuda()
detections = detections.cuda()
for c in unique_labels:
#------------------------------------------#
# 获得某一类得分筛选后全部的预测结果
#------------------------------------------#
detections_class = detections[detections[:, -1] == c]
#------------------------------------------#
# 使用官方自带的非极大抑制会速度更快一些!
#------------------------------------------#
keep = nms(
detections_class[:, :4],
detections_class[:, 4] * detections_class[:, 5],
nms_thres
)
max_detections = detections_class[keep]
# # 按照存在物体的置信度排序
# _, conf_sort_index = torch.sort(detections_class[:, 4]*detections_class[:, 5], descending=True)
# detections_class = detections_class[conf_sort_index]
# # 进行非极大抑制
# max_detections = []
# while detections_class.size(0):
# # 取出这一类置信度最高的,一步一步往下判断,判断重合程度是否大于nms_thres,如果是则去除掉
# max_detections.append(detections_class[0].unsqueeze(0))
# if len(detections_class) == 1:
# break
# ious = bbox_iou(max_detections[-1], detections_class[1:])
# detections_class = detections_class[1:][ious < nms_thres]
# # 堆叠
# max_detections = torch.cat(max_detections).data
# Add max detections to outputs
output[image_i] = max_detections if output[image_i] is None else torch.cat(
(output[image_i], max_detections))
return output
def merge_bboxes(bboxes, cutx, cuty):
merge_bbox = []
for i in range(len(bboxes)):
for box in bboxes[i]:
tmp_box = []
x1,y1,x2,y2 = box[0], box[1], box[2], box[3]
if i == 0:
if y1 > cuty or x1 > cutx:
continue
if y2 >= cuty and y1 <= cuty:
y2 = cuty
if y2-y1 < 5:
continue
if x2 >= cutx and x1 <= cutx:
x2 = cutx
if x2-x1 < 5:
continue
if i == 1:
if y2 < cuty or x1 > cutx:
continue
if y2 >= cuty and y1 <= cuty:
y1 = cuty
if y2-y1 < 5:
continue
if x2 >= cutx and x1 <= cutx:
x2 = cutx
if x2-x1 < 5:
continue
if i == 2:
if y2 < cuty or x2 < cutx:
continue
if y2 >= cuty and y1 <= cuty:
y1 = cuty
if y2-y1 < 5:
continue
if x2 >= cutx and x1 <= cutx:
x1 = cutx
if x2-x1 < 5:
continue
if i == 3:
if y1 > cuty or x2 < cutx:
continue
if y2 >= cuty and y1 <= cuty:
y2 = cuty
if y2-y1 < 5:
continue
if x2 >= cutx and x1 <= cutx:
x1 = cutx
if x2-x1 < 5:
continue
tmp_box.append(x1)
tmp_box.append(y1)
tmp_box.append(x2)
tmp_box.append(y2)
tmp_box.append(box[-1])
merge_bbox.append(tmp_box)
return merge_bbox